A multi color space approach for texture classification: experiments with Outex, Vistex and Barktex image databases

نویسندگان

  • Alice Porebski
  • Nicolas Vandenbroucke
  • Ludovic Macaire
چکیده

The color of pixels can be represented in different color spaces which respect different properties. Many authors have compared the classification performances reached by these color spaces in order to determine the one which would be the well suited to color texture analysis. However, the synthesis of these works shows that the choice of the color space depends on the considered texture images. Moreover, the prior determination of a color space which is well suited to the considered class discrimination is not easy. That is why we propose to consider a multi color space approach designed for color texture classification. It consists in selecting, among a set of color texture features extracted from images coded in different color spaces, those which are the most discriminating for the considered color textures. In this paper, we experimentally study the contribution of this multi color space with three well-known benchmark databases, namely Outex, Vistex and Barktex. Comparison and discussion are then carried out.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative study of color- texture image features

In this work we compare two spatial and two wavelet-domain feature extraction methods that have been proposed in the recent literature for color-texture classification. The corresponding color-texture features, namely the Opponent-Color Local Binary Pattern distributions, the Chromaticity Moments, the Wavelet Correlation Signatures and the Color Wavelet Covariance features, are extracted in RGB...

متن کامل

Color Texture Image Retrieval Based on Local Extrema Features and Riemannian Distance

A novel efficient method for content-based image retrieval (CBIR) is developed in this paper using both texture and color features. Our motivation is to represent and characterize an input image by a set of local descriptors extracted from characteristic points (i.e., keypoints) within the image. Then, dissimilarity measure between images is calculated based on the geometric distance between th...

متن کامل

Local Jet Pattern: A Robust Descriptor for Texture Classification

Methods based on local image features have recently shown promise for texture classification tasks, especially in the presence of large intra-class variation due to illumination, scale, and viewpoint changes. Inspired by the theories of image structure analysis, this paper presents a simple, efficient, yet robust descriptor namely local jet pattern (LJP) for texture classification. In this appr...

متن کامل

Mimicking human texture classification

In an attempt to mimic human (colorful) texture classification by a clustering algorithm three lines of research have been encountered, in which as test set 180 texture images (both their color and gray-scale equivalent) were drawn from the OuTex and VisTex databases. First, a k-means algorithm was applied with three feature vectors, based on color/gray values, four texture features, and their ...

متن کامل

Hybrid color-texture space for image classification

This work presents an approach for the construction of a hybrid color-texture space by using mutual information. Feature extraction is done by the Laws filter with SVM (Support Vectors Machine) as a classifier. The classification is applied on the VisTex database and a SPOT HRV (XS) image representing two forest areas in the region of Rabat in Morocco. The result of classification obtained in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010